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Carmofur, a 5-fluorouracil (5-FU) derivative and antineoplastic agent that inhibits 
acid ceramidase, has been widely studied as an anticancer agent but was more 
recently, through a drug repurposing screen, identified as a covalent inhibitor of the 
main protease of SARS-CoV-2. The ongoing severe acute respiratory syndrome 
coronavirus 2 pandemic has caused millions of fatalities worldwide, impacting all 
aspects of daily life. The SARS-CoV-2 main protease (Mpro) plays an essential role 
in the processing of the polyproteins that are translated from the viral RNA, 
therefore making it an attractive drug target for the treatment of COVID-19. 
However, with new mutations arising in Mpro, designing drugs that retain efficacy 
against mutants is crucial. Here, we present the in silico evaluation and synthesis of 
carmofur and a library of carmofur analogs with aliphatic, amino acid, and aromatic 
fragments against mutations in Mpro. Homology modeling was used to determine 
the conformational change in the protein as a result of the mutations and their 
effects on the binding affinity of our analogs, revealing potential hit compounds to 
further develop for treating COVID-19. Furthermore, we detail how the application 
of benchtop 19F NMR to monitor real-time kinetics of a reaction seemingly 
impossible to track quantitatively enables the synthesis of hit analogs for future 
in-vivo testing. 
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Aliphatic Analogs: increasing aliphatic tail 
length confers marginally better binding 
affinity with WT Mpro 

Benzyl Analogs: exhibit fewer 
hydrophobic interactions and do not 
enter the S2 subsite. 
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Carmofur binding interactions with Mpro

(a) The 2D skeleton structure of carmofur. (b) The 3D structure of carmofur. (c) The 
active site of Mpro to assess carmofur’s binding affinity to it. (d) Interactions between 
amino acids comprising the Mpro active site. (e) The interactions between the aliphatic 

tail of carmofur (without 5-fluorouracil). The aliphatic tail engages in many 
hydrophobic interactions with the residues in the active site and hydrophobic S2 

subsite, suggesting that such interactions help to stabilize carmofur in Mpro.

Amino Acid Analogs: Analog 2s consistently had 
high binding affinity with WT and its variants.

H164P variant
carmofur: -5.6 kcal/mol analog 2s: -7.5 kcal/mol

Aryl Isocyanates: We hypothesize that aryl 
isocyanates have more difficulty coupling with 
5-fluorouracil.

2-chloroethyl: 
High potential 

potency

- quantitative reaction monitoring in 
non-deuterated solvent
- rapid generation of novel analogs
- inhibitors for SARS-CoV-2 Mpro + acid 
ceramidase

m-Tolyl 3,5-dimethylphenyl


